1. Peluang Suatu Kejadian
 Kejadian adalah himpunan bagian dari ruang sampel, sedangkan titik sampel adalah setiap hasil yang mungkin terjadi pada suatu percobaan. Jika A adalah suatu kejadian yang terjadi pada suatu percobaan dengan ruang sampel S, di mana setiap titik sampelnya mempunyai kemungkinan sama untuk muncul, maka peluang dari suatu kejadian A ditulis sebagai berikut.

             n(A)
P(A) = ———
             n(S )

Keterangan:
P(A) = peluang kejadian A
n(A) = banyaknya anggota A
n(S) = banyaknya anggota ruang sampel S

Contoh :
Pada pelemparan 3 buah uang sekaligus, tentukan peluang muncul:
a. ketiganya sisi gambar;
b. satu gambar dan dua angka.

Penyelesaian:
a. S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}
    Maka n(S) = 8
    Misal kejadian ketiganya sisi gambar adalah A.
    A = {GGG}, maka n(A) = 1
                  n(A)          1
    P(A) =  ——— =——
                  n(S )         8
b. Misal kejadian satu gambar dan dua angka adalah B.
     B = {AAG, AGA, GAA}, maka n(B) = 3
                  n(B)        3
    P(B) =  ——— =——
                  n(S )       8

Contoh:
Andi mengikuti  acara Jalan Santai dengan doorprize 5 buah sepeda motor. Jika jalan santai tersebut diikuti oleh 1000 orang, berapakah peluang Andi mendapatkan doorprize sepeda motor?

Penyelesaian:
S = semua peserta jalan santai
maka n(S) = 1000
Misal kejadian  Andi mendapatkan motor adalah A.
A = {Motor1, Motor2, Motor3, Motor4, Motor5}
maka n(A) = 5
                  n(A)           5           1
    P(A) =  ——— = ——— = ——
                  n(S )       1000       200                              
                                                                                              1
Jadi peluang Andi mendapatkan doorprize sepeda motor  ——
                                                                                            200
2. Kisaran Nilai Peluang
Untuk mengetahui kisaran nilai peluang, perhatikan soal berikut:
Contoh 18:
Sebuah dadu dilemparkan sekali, tentukan peluang munculnya
a. Mata dadu 8               b. Mata dadu kurang dari 7
Penyelesaian:
a.  S = {1, 2, 3, 4, 5, 6}, n(S) = 6
     misal kejadian muncul mata dadu 8 adalah A
     A = { }, n(A) = 0
                   n(A)         0      
     P(A) =  ——— = — =  0
                   n(S )         6     
     Kejadian muncul mata dadu 8 adalah kejadian mustahil, P(A) = 0
b.  S = {1, 2, 3, 4, 5, 6}, n(S) = 6
     misal kejadian muncul mata dadu kurang dari 7 adalah B
     B = {1, 2, 3, 4, 5, 6}, n(B) = 6
                   n(B)       6      
     P(B) =  ——— = — =  1
                   n(S )      6     
    Kejadian muncul mata dadu kurang dari 7  adalah kejadian pasti, P(A) = 1

Jadi kisaran nilai peluang: 0  ≤  P(A) ≤ 1

3. Frekuensi Harapan Suatu Kejadian
Frekuensi harapan dari sejumlah kejadian merupakan banyaknya kejadian dikalikan dengan peluang kejadian itu. Misalnya pada percobaan A dilakukan n kali, maka frekuensi harapannya ditulis sebagai berikut.

  Fh = n × P(A)

Contoh 19:
Pada percobaan pelemparan 3 mata uang logam sekaligus sebanyak 240 kali, tentukan frekuensi harapan munculnya dua gambar dan satu angka.
Penyelesaian:
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG} ⇒ n(S) = 8
A = {AGG, GAG, GGA} ⇒ n(A) = 3
                                            n(A)                3
Fh(A) = n × P(A) = 240 × —— = 240 × —— =  90 kali
                                             n(S)                 8

4. Peluang Komplemen Suatu Kejadian
Untuk mempelajari peluang komplemen, perhatikan contoh berikut.
Contoh:
Pada pelemparan sebuah dadu sekali, berapakah peluang munculnya:
a. nomor dadu ganjil,
b. nomor dadu tidak ganjil?
Penyelesaian:
a.  S = {1, 2, 3, 4, 5, 6}, maka n(S) = 6.
     A adalah kejadian  keluar nomor dadu ganjil
     A = {1, 3, 5}, maka n(A) = 3 sehingga
                  P(A) = n(A)/n(s) = 3/6 = 1/2
b.  B adalah kejadian  keluar nomor dadu tidak ganjil
     B = {2, 4, 6}, maka n(B) = 3 sehingga
                  n(B)            3        1
     P(B) =  ——— =—— = — , Peluang B adalah Peluang komplemen dari A
                  n(S )          6        2
Dari contoh tersebut kita dapat mengambil kesimpulan bahwa:

                      
 P(A) + P(AC) = 1 atau P(AC) = 1 – P(A)

Contoh:
Pada pelemparan 3 buah uang sekaligus, tentukan peluang munculnya  paling
sedikit satu angka !
Penyelesaian:
Cara biasa
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}, maka n(S) = 8
Misal kejadian paling sedikit satu angka adalah A.
A = {AAA, AAG, AGA, GAA, AGG, GAG, GGA}, maka n(A) = 7
              n(A)          7
P(A) =  ——— = ——
              n(S )          8

Cara komplemen
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}, maka n(S) = 8
Misal kejadian paling sedikit satu angka adalah A.
Ac = {GGG}, maka n(Ac) =1

              n(Ac)          1
P(Ac) =  ——— = ——
              n(S )            8

                                       1             7
P(A) = 1 – P(Ac) = 1 – —— = ——
                                       8             8

5. Peluang Kejadian Majemuk
a. Peluang Gabungan 2 kejadian
Misal A dan B adalah dua kejadian yang berbeda, maka peluang kejadian
A ∪  B ditentukan dengan aturan:

 P(A ∪ B) = P(A) + P(B) – P(A∩B)

Contoh:
Sebuah dadu dilambungkan sekali, jika A adalah kejadian munculnya bilangan ganjil dan B adalah kejadian munculnya bilangan prima. Tentukan peluang kejadian munculnya bilangan ganjil atau prima!
Penyelesaian:

S = {1, 2, 3, 4, 5, 6}
A = bilangan ganjil : {1, 3, 5} → P(A) = 3/6
B = bilangan prima : {2, 3, 5} → P(B) =3/6                               
A∩B = {3, 5} → P{A∩B} = 2/6
P(A∪ B) = P(A) + P(B) – P(A∩B)
               = 3/6 + 3/6  – 2/6 = 4/6 = 2/3
Jadi peluang kejadian munculnya bilangan ganjil atau prima adalah 2/3

Contoh:
Diambil sebuah kartu dari 1 set kartu bridge, tentukan peluang terambilnya kartu As atau kartu Hati!
Penyelesaian:
n(S) = 52 (karena banyaknya kartu dalam 1 set kartu bridge 52)
A = kartu As, n(A) = 4 (Banyaknya kartu As dalam1 set kartu bridge 4)
              4
P(A) = ——
             52
B = kartu Hati, n(B) = 13 (Banyaknya kartu Hati dalam1 set kartu bridge 13)
             13
P(B) = ——
             52                         
n(A∩B) = 1 (Banyaknya Kartu As dan  Hati dalam1 set kartu bridge 1)
                   1
P(A∩B) = ——
                  52                                                
                                                             4             13      1        16
P(A∪ B) = P(A) + P(B) – P(A∩B) = —— + —— – —   = ——
                                                            52           52      52         52       
                                                                                                    16       
Jadi peluang kejadian terambilnya kartu As atau Hati  adalah ——
                                                                                                     52

b. Peluang Kejadian Saling Lepas (Saling Asing)
Kejadian A dan B saling asing jika kedua kejadian tersebut tidak mungkin terjadi bersama-sama. Ini berarti A∩B = 0  atau P(A∩B) = 0
Sehingga: P (A∪ B) = P(A) + P(B) – P(A∩B) = P(A) + P(B) – 0
  P (A∪ B) = P(A) + P(B)

Contoh:

Sebuah dadu dilambungkan sekali, jika A adalah kejadian munculnya bilangan ganjil dan B adalah kejadian munculnya bilangan genap. Tentukan peluang kejadian munculnya bilangan ganjil atau genap!
Penyelesaian:


S = {1, 2, 3, 4, 5, 6}
A = bilangan ganjil : {1, 3, 5} → P(A) = 3/6
B = bilangan genap : {2, 4, 6} → P(B) =3/6                               
A∩B = {} → P(A∩B) = 0 (A dan B kejadian saling lepas)
P(A∪ B) = P(A) + P(B)
               = 3/6 + 3/6 = 1
Jadi peluang kejadian munculnya bilangan ganjil atau genap adalah 1
Contoh:
Sebuah kotak berisi 5 bola merah, 2 bola kuning dan 1 bola biru. Akan diambil sebuah bola secara acak. Tentukan peluang terambilnya bola merah atau bola kuning!
Penyelesaian:

                         8!                     8!              8 . 7!
n(S) = 8C1 = ————  = ————  = ——— =  8
                     1!(8- 1)!               1 . 7!            7!
Misal kejadian terambilnya kelereng merah adalah A, maka:
                              5!                  5!                         n(A)          5         
    n(A) = 5C1 = ———— = —— = 5,    P(A) = ——— = ——
                         1!(5 - 1)!           4!                          n(S)           8             
Misal kejadian terambilnya kelereng kuning adalah B, maka:
                              2!                  2!                         n(B)         2           
    n(B) = 2C1 = ———— = ——  = 2,    P(B) = ——— = ——
                         1!(2 - 1)!             1!                         n(S)         8            
A∩B = {}  (Kejadian saling lepas)
                                                5           2         7
P(A∪ B) = P(A) + P(B) = ——  +  ——  = —— 
                                               8           8         8                  7
Jadi peluang terambilnya bola merah atau bola kuning ——
                                                                                           8
c. Peluang Kejadian Saling Bebas
Jika kejadian A tidak memengaruhi terjadinya kejadian B dan sebaliknya, atau terjadi atau tidaknya kejadian A tidak tergantung pada terjadi atau tidaknya kejadian B maka dua kejadian ini disebut kejadian saling bebas. Hal ini seperti digambarkan pada pelemparan dua buah dadu sekaligus.
A adalah kejadian munculnya dadu pertama angka 3 dan
B adalah kejadian munculnya dadu kedua angka 5
maka kejadian A dan kejadian B merupakan dua kejadian yang saling bebas, dan peluang kejadian ini dapat dirumuskan:

  P(A∩B) = P(A) × P(B)

Coba kamu pelajari contoh berikut untuk lebih memahami tentang kejadian saling bebas.
Contoh:
Dua buah dadu dilemparkan bersama-sama, tentukan peluang munculnya mata dadu 3 pada dadu pertama dan mata dadu 5 pada dadu kedua!
Penyelesaian: 

Kejadian munculnya mata dadu 3 pada dadu pertama tidak terpengaruh kejadian munculnya mata dadu 5 pada dadu kedua jadi ini adalah dua kejadian yang saling bebas
S = {(1, 1), (1, 2), (1, 3), ….., (6, 6)} → n(S) = 36
Misal kejadian munculnya mata dadu 3 pada dadu pertama adalah A, maka:
                                                                                                            6         1
A = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)} → n(A) = 6  P(A) = —— = ——
                                                                                                             36        6
Misal kejadian munculnya mata dadu 5 pada dadu kedua adalah B, maka:
                                                                                                              6         1
B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5)} → n(B) = 6  P(B) = —— = ——     
                                                                                                              36        6

                                              1           1          1         
P(A∩B) = P(A) × P(B) =  ——  × ——  = ——
                                               6           6         36        
                    
Jadi peluang munculnya mata dadu 3 pada dadu pertama dan mata dadu 5
                                 1
pada dadu kedua = ——
                                36
Contoh:Kotak A berisi 5 bola merah dan 3 bola kuning sedangkan Kotak B berisi 5 bola merah dan 2 bola kuning. Akan diambil sebuah bola secara acak dari masing-masing kotak. Tentukan peluang terambilnya bola merah dari kotak A dan terambilnya bola kuning dari kotak B!
Penyelesaian:
Kotak A
                          8!                      8!              8 . 7!
n(S) = 8C1 = ————  = ————  = ——— =  8
                     1!(8- 1)!              1 . 7!            7!
Misal kejadian terambilnya bola merah dari kotak A adalah A, maka:
                              5!               5!                              n(A)         5         
    n(A) = 5C1 = ———— = —— = 5,    P(A) = ——— = ——
                         1!(5 - 1)!          4!                                n(S)         8 
Kotak B
                         7!                     7!              7 . 6!
n(S) = 7C1 = ————  = ————  = ——— =  7
                     1!(7- 1)!              1 . 6!            6!          
Misal kejadian terambilnya bola kuning dari kotak B adalah B, maka:
                              2!             2!                              n(B)          2           
    n(B) = 2C1 = ———— = —— = 2,    P(B) = ——— = ——
                         1!(2 - 1)!       1!                              n(S)          7            
                                              5           2            5         
P(A∩B) = P(A) × P(B) =  ——  × ——  = ——
                                             8           7            28

6. Peluang Kejadian Bersyarat
Dua kejadian disebut kejadian bersyarat atau kejadian yang saling bergantung apabila terjadi atau tidak terjadinya kejadian A akan mempengaruhi terjadi atau tidak terjadinya kejadian B. Peluang terjadinya kejadian A dengan syarat kejadian B telah terjadi adalah:
                  P(A∩B)     
 P(A/B) =  ————  P(B) ≠ 0
                    P(B)     

Atau Peluang terjadinya kejadian B dengan syarat kejadian A telah terjadi adalah:
                  P(A∩B)     
 P(B/A) =  ————  P(A) ≠ 0
                    P(A)     

Contoh:
Sebuah kotak berisi 5 bola merah dan 3 bola kuning. Akan diambil sebuah bola secara acak berturut-turut sebanyak dua kali tanpa pengembalian . Tentukan peluang terambilnya keduanya bola merah!
Penyelesaian:                    
Misal kejadian terambilnya bola merah pada pengambilan pertama adalah A, maka:
                   n(A)        5         
     P(A) = ——— = ——
                   n(S)        8 

Misal kejadian terambilnya bola merah pada pengambilan kedua adalah B, maka:
                    n(B/A)      4         
     P(B/A) = ——— = ——
                     n(S)        7
                                                  5           4          5         
P(A∩B) = P(A) × P(B/A) =   ——  × ——  = ——
                                                   8           7         14      
Demikianlah sedikit uraian materi tentang rumus-rumus peluang. Anda