Trigonometri (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segi tiga dan fungsi trigonometrik seperti sinus, cosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidak setujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.
Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut. Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis.
Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut. Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis.
A. Pengertian Trigonometri
Trigonometri terdiri dari sinus (sin), cosinus (cos), tangens ( tan), cotangens (cot), secan (sec) dan cosecan (cosec). Trigonometri merupakan nilai perbandingan yang didefinisikan pada koordinat kartesius atau segitiga siku-siku.
Jika trigonometri didefinisikan dalam segitiga siku-siku, maka definisinya adalah sebagai berikut:
Trigonometri terdiri dari sinus (sin), cosinus (cos), tangens ( tan), cotangens (cot), secan (sec) dan cosecan (cosec). Trigonometri merupakan nilai perbandingan yang didefinisikan pada koordinat kartesius atau segitiga siku-siku.
Jika trigonometri didefinisikan dalam segitiga siku-siku, maka definisinya adalah sebagai berikut:
B. Nilai Trigonometri untuk Sudut-sudut Istimewa
C. Rumus-rumus Identitas Trigonometri
D. Rumus- Rumus Trigonometri
RUMUS- RUMUS TRIGONOMETRI
PENJUMLAHAN DUA SUDUT (a + b)
sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a
SELISIH DUA SUDUT (a - b)
sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a
SUDUT RANGKAP
sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)
Secara umum :
sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na
BENTUK PENJUMLAHAN DAN PERKALIAN
sin a + sin b = 2 sin a + b cos a - b
sin a - sin b = 2 cos a + b sin a - b
cos a + cos b = 2 cos a + b cos a - b
cos a + cos b = - 2 sin a + b sin a - b
BENTUK PERKALIAN DAN PENJUMLAHAN
2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)
Rumus Trigonometri Sudut Ganda
1. Rumus Sinus Sudut Ganda
Dengan menggunakan rumus sin (A + B), untuk A = B maka diperoleh:
sin 2A = sin (A + B)
= sin A cos A + cos A sin A
= 2 sin A cos A
Rumus:
Untuk lebih jelasnya, perhatikan contoh soal berikut ini.
Contoh soal:
Diketahui sin A = – 5/13 , di mana A di kuadran III. Dengan menggunakan rumus
sudut ganda, hitunglah sin 2A.
Penyelesaian:
b. Rumus Cosinus Sudut Ganda
Dengan menggunakan rumus cos (A + B), untuk A = B maka diperoleh:
cos 2A = cos (A + A)
= cos A cos A – sin A sin A
= cos2 A – sin2 A ……………..(1)
c. Rumus Tangen Sudut Ganda
Dengan menggunakan rumus tan (A + B), untuk A = B diperoleh:
PENJUMLAHAN DUA SUDUT (a + b)
sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a
SELISIH DUA SUDUT (a - b)
sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a
SUDUT RANGKAP
sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)
Secara umum :
sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na
BENTUK PENJUMLAHAN DAN PERKALIAN
sin a + sin b = 2 sin a + b cos a - b
sin a - sin b = 2 cos a + b sin a - b
cos a + cos b = 2 cos a + b cos a - b
cos a + cos b = - 2 sin a + b sin a - b
BENTUK PERKALIAN DAN PENJUMLAHAN
2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)
Rumus Trigonometri Sudut Ganda
1. Rumus Sinus Sudut Ganda
Dengan menggunakan rumus sin (A + B), untuk A = B maka diperoleh:
sin 2A = sin (A + B)
= sin A cos A + cos A sin A
= 2 sin A cos A
Rumus:
Contoh soal:
Diketahui sin A = – 5/13 , di mana A di kuadran III. Dengan menggunakan rumus
sudut ganda, hitunglah sin 2A.
Penyelesaian:
b. Rumus Cosinus Sudut Ganda
Dengan menggunakan rumus cos (A + B), untuk A = B maka diperoleh:
cos 2A = cos (A + A)
= cos A cos A – sin A sin A
= cos2 A – sin2 A ……………..(1)
atau
cos 2A = cos2 A – sin2 A
= cos2 A – (1 – cos2 A)
= cos2 A – 1 + cos2 A
= 2 cos2 A – 1 ……………..(2)
atau
cos 2A = cos2 A – sin2 A
= (1 – sin2 A) – sin2 A
= 1 – 2 sin2 A …………(3)
Dari persamaan (1), (2), dan (3) didapat rumus sebagai berikut
cos 2A = cos2 A – sin2 A
= cos2 A – (1 – cos2 A)
= cos2 A – 1 + cos2 A
= 2 cos2 A – 1 ……………..(2)
atau
cos 2A = cos2 A – sin2 A
= (1 – sin2 A) – sin2 A
= 1 – 2 sin2 A …………(3)
Dari persamaan (1), (2), dan (3) didapat rumus sebagai berikut
Pelajarilah contoh soal berikut untuk memahami rumus cosinus sudut ganda.
Contoh soal:
Diketahui cos A = – 24/25 , di mana A dikuadran III. Dengan menggunakan rumus
sudut ganda, hitunglah nilai cos 2A.
Penyelesaian:
Contoh soal:
Diketahui cos A = – 24/25 , di mana A dikuadran III. Dengan menggunakan rumus
sudut ganda, hitunglah nilai cos 2A.
Penyelesaian:
c. Rumus Tangen Sudut Ganda
Dengan menggunakan rumus tan (A + B), untuk A = B diperoleh:
tan 2A = tan (A + A)
Demikianlah sedikit uraian materi tentang aplikasi trigonometri
Rumus:
Perhatikan contoh soal berikut ini.
Contoh soal:
Jika α sudut lancip dan cos α = 4/5 , hitunglah tan 2α.
Penyelesaian:
Contoh soal:
Jika α sudut lancip dan cos α = 4/5 , hitunglah tan 2α.
Penyelesaian:
Demikianlah sedikit uraian materi tentang aplikasi trigonometri

0 Komentar